The generalized eigendecomposition approach to the blind source separation problem
نویسنده
چکیده
This paper proposes a novel formulation of the generalized eigendecomposition (GED) approach to blind source separation (BSS) problems. The generalized eigendecomposition algorithms consider the estimation of a pair of correlation matrices (a matrix pencil) using observed sensor signals. Each of various algorithms proposed in the literature uses a different approach to form the pencil. This study proposes a linear algebra formulation which exploits the definition of congruent matrix pencils and shows that the solution and its constraints are independent of the way the matrix pencil is computed. Also an iterative eigendecomposition algorithm, that updates separation parameters on a sample-by-sample basis, is developed. It comprises of: (1) performing standard eigendecompositions based on power and deflation techniques; (2) computing a transformation matrix using spectral factorization. Another issue discussed in this work is the influence of the length of the data segment used to estimate the pencil. The algorithm is applied to artificially mixed audio data and it is shown that the separation performance depends on the eigenvalue spread. The latter varies with the number of samples used to estimate the eigenvalues. © 2005 Elsevier Inc. All rights reserved.
منابع مشابه
An Iterative Eigendecomposition Approach to Blind Source Separation
In this work we address the generalized eigendecomposition approach (GED) to the blind source separation problem. We present an alternative formulation for GED based on the definition of congruent pencils. Making use of this definition, and matrix block operations, the eigendecompostion approach to blind source separation is completely characterized. We also present an iterative method to compu...
متن کاملA Matrix Pencil Approach to the Blind Source Separation of Artifacts in 2D NMR Spectra
Multidimensional proton nmr spectra of biomolecules dissolved in aqueous solutions are usually contaminated by an intense water artifact. We discuss the application of the generalized eigenvalue decomposition (GEVD) method using a matrix pencil to solve the blind source separation problem of removing the intense solvent peak and related artifacts. 2D NOESY spectra of simple solutes as well as d...
متن کاملRecursive complex BSS via generalized eigendecomposition and application in image rejection for BPSK
Under the assumptions of non-Gaussian, non-stationary, or non-white independent sources, linear blind source separation can be formulated as generalized eigenvalue decomposition. Here we provide an elegant method of doing this on-line, instead of waiting for a sufficiently large batch of data. This is done through a recursive generalized eigendecomposition algorithm that tracks the optimal solu...
متن کاملApproximate diagonalization approach to blind source separation with a subset of matrices
In Blind Source Separation problems it is assumed that the approximate diagonalization of a matrix set achieves more robust solutions than the simultaneous diagonalization of a matrix pencil. In this work we will analyse approximate diagonalization methods using a generalized eigendecomposition (GED) of any pair of a given matrix set. The constraints of GED solutions provide a criterion to choo...
متن کاملEigendecomposition of self-tuned cumulant-matrices for blind source separation
Existing algorithms for blind source separation are often based on the eigendecomposition of fourth-order cumulant matrices. However, when the cumulant matrices have close eigenvalues, their eigenvectors are very sensitive to errors in the estimation of the matrices. In this paper, we show how to produce a cumulant matrix that has a well-separated extremal eigenvalue. The corresponding eigenvec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Digital Signal Processing
دوره 16 شماره
صفحات -
تاریخ انتشار 2006